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SUMMARY

The primary objective of the program was characterizaClon of the RC2-75 Ro-

tating ComBustion Engine as an aircraft engine. Included is _he determina-

tion of complete engine performance, exhaus_ emission measurements and _he

provision of other applicable charac_erizlng information sufficient to permit

evaluation of the engine in aircraft applications.

The RC2-75 tested in this program was as originally designed, except for a
rotor rework.

It was tested for 106.5 hours and performed without any engine problems, show-
ing good static pressure checks, after run-L_ and at the end of =he test.

The testing included running fuel-air mixture control curves and varied igni-

tion timing to permit selection of desirable and practical settings. The
following selections resulted :

SELECTED ENGINE SETTINGS

Operating Conditions Fuel/Air SparkAdvance
Ratio

(Degrees BTC)

Full throttle, 3500 to 6000 RPM, Take-Off,

Taxi, Climb-Out, Approach

Idle

Cruise, 3500 to 5500 RPM, Best Power

Cruise, 3500 to 5500 RPM, Best Economy

Propeller Load, 45 to 85% Power

.073

Smooth

.073

•065

.O65

35

35

55

55

55

L

F-

These were used to run wide open throttle curves, propeller load curves, vari-

able manifold pressure curves covering cruise conditions, and EPA cycle oper-

ating points. Performance and emissions data were recorded for all of the
points run.

Three methods of calculating air/fuel ratio from emissions measurements were

employed; two carbon balance procedures, one being the Spindt method, and one

oxygen balance procedure. Data points were not considered satisfactory unless
all three methods agreed within 5% of the measured elf/fuel ratio.

A comprehensive program of calibration of all data gathering instruments and

equipment was carried out before, during and after the engine test program.
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Curves of the performance, emissions, oil and coolant flows, and heat rejec-

tion data are presented. Vibratory mount forces a-.e discussed.

The exhaust emissions results compared to the 1980 EPA requirements in pounds/
rated bhp-cycle were:

Demons trated EPA Standard

HC 0.00264 0.0019

CO 0.03737 0.0420

NOx 0.00085 0.0015

Variable mixture curves for the propeller load cruise range exhaust emissions

are shown. These form distinct families related to the powers and speeds run.

In addition to the test data, information required to characterize the engine

and evaluate its performance in aircraft use ks provided over a range from one

half to twice its present power, (212.5 kW, 285 bhp). Sizing curves are shown

of displacement vs speed and power, weight vs power, overall size vs displace-

ment, and heat rejection vs power.

Installation drawings were provided for the RC2-75 engine, and outline draw-

ings for RC1-75, RC4-75, RC2-27, and RC2-215 engines.

The specific fuel economy demonstrated for the RC2-75 was 356 g/kW-hr (.585

Ib/bhp-hr) at take-off and 326 g/kW-hr (.536 ib/bhp-hr) at 77% power.

2

/
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INTRODUCTION

CURTISS-WRIGHT has been actively engaged in research and development of ro-

tating combustion engines for 18 years.

Starting in mid-1958, Curtiss-Wright designed and built more than I0 different

experimental W_nkel engine models (C-W designates their own design series as

RC x - y, where x i_ the number, of rotating combustion (RC) engine rotors and

y is the displacement, in cubic inches, per r_tor), ranging from the small

_CI-4.3 to the RCI-1920 (Figure 54). Over 47,000 west hours have been accu-

mulated on our dynamometers and in a broad variety of RC2-60 field test vehi-

cles including various sizes of wheeled and tracked cars and t_=cks, boats,

aircraft, and stationary powerplants.

Direct rotating combustion engine production by Curtiss-Wright remains a con-

sideration primarily in those areas associated with historical orientation:

aircraft power and advanced military engines.

A description of the Rotary Engine Development activity at Curtiss-Wrlght

from 1958 to 1971 may be found in Reference i. It includes information on

design features, apex seal development, testing, and application of the

Rotary Engine to automotive, aircraft, and small air-cooled engines. Reports

giving more details of the aircraft-related testing are listed in _he Bibli-

ography.

Curt£ss-Wright's flight experience with the RC2-60 automotive prototype led

to the development of a liquid-cooled, gasoline fueled rotary engine, in the

300 horsepower class, the RC2-75, for application to military and commercial

light aircraft.

The RC2-75 is a liquid-cooled two chamber Rotary Combustion Engine (Wankel

type), with an integral propeller shaft gear reduction, (Figure i). While

earlxer Curtiss-Wright Rotary Combustion engines were designed for the pur-

pose of research and development activities, and therefore configured for

manufacturing methods practical for very small quantities, the RC2-75 Rouary

Engine was designed to be a production general aviation engine using manufac-

turing methods consistent with the size of the general aviation market. The

designs used reflect the results of extensive coordination with suppliers re-

garding processing, cost vs functior and durability, and producibillty.

The RC2-75 power section is essentially the RC-60 configuration, which has

accumulated over 40,000 hours of operation, extended axially from 3 to 3-3/4

in. for increased output. While the engine is fundamentally an expanded RC2-

60 with aircraft accessories and integral propeller drive, it does incorpo-

rate all applicable low-cost production features developed during an intensive

value engineering study conducted with seven teams of design�manufacturing/

purchasing/metallurgy specialists on the RC2-60. This engine, using periph-

eral (radial) intake ports, is intended to have an initial rating of 285 hp

at 6000 rpm with increases on the order of 15% planned shortly after intro-

d,:ction, and further growth increases with continued development. The esti-

mated weight of 280 ib dry (358 ib wet, ready to fly including coolers and

J..
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coolant) is lighter, and the overall dimensions of 21.5 x 23.7 x 31.& in. are

smaller than all existing co_erclal aviation piston powerplants. A direc.'-

drive version, intended for helicopter or shrouded propel_er applications, is

still lighter by virtue of the reduc=lon gear savings. The propeller drive

engine configuration and approach were continuously reviewed during the

process of definition with Piper, Cessna, and Beech, th= intended users, as
well as the FAA and accessory suppliers.

In addition to the directly applicable RC2-60 development testing cited above,

75 cubic inch power section engines nave accumulated over Ii00 hours on RCI-75

engines and 345 hours on RC2-75 engines (_nc!uding 106.5 on engine 7521-8 for

this program). Durability experien:e to date has been good. A i00 hour full

throttle, 6000 rpm endurance test was completed on the RC2-75 with no signifi-

cant problems. Good durability was also demonstrated in an RCI-75 test with

enlarged ports which produced 170 bhp at 7000 rpm.

Other RCI-75 tests evaluated surface gap spark plugs located closer to the

_rochoid surface (Figure 2). Results are shown in Figure 37. Previous RC2-75

tests included an engine installed on a flight stand (Figure 3).

A projection has been made of the overall FAA "Type Certification" activities

tha_ would be required by the FAA and Curuiss-Wright to consider the RC2-75

ready for commercial utilization. A program of approximately 24 months dura-

tion is required which includes a variety of RCI-75 and RC2-75 testing as out-

lined in Appendix A. The bulk of the activity is in connection wi_h the many

details requring coordination to provide a flyable engine to =he end user,

even after the basic power unit is satisfactory. This can be taken as an in-

dex of the "Maturity" of the RC2-75 compared _o the various candidates for

alternate general aviation powerplan_s. I= is important to note when compar-

ing the IC2-75 to possible Diesel or Stifling aircraft engines, the various

RC2-60 flight tests described above and the produ_:tion status of _he RC2-75.

Its nearness to commmercial status places the RC2-75 closer to the reciprocat-

ing and gas turbine engines in terms of "maturity" as a candidate for C,ener_l
Aviation applications.

The purposes of this effort are:

1.

.

To determine the sea level performance and emissions data of _he

RC2-75 rotary combustion aircraft engine, and

To establish characteristic data to permit evaluation of =he engine

in a range of sizes from one hail _o twice its rated power (212.5
kW, 285 bhp).



I. PERFORMA_NCE AND EMISSIONS ENGINE TESTIXG

A. Tes= Engine Description (RC2-7_)

Excerpts from the RC2-75 Engine Specification are in Appendix E.

Some of the specific design features of engine 7521-8 are as follows:

An integral gear reduction is provided with a ratio of engine shaft

to propeller shaft rpm of 2.74!/!. A single spur gear mesh is used,

with an estimated mechanical efficiency of 99%.

The RC2-75 is a liquid coole¢ engine, with a sealed coolant system

using reliable lines, connections, and water p_mp seal. For appli-

cation =o an aircraft engine, th_ sealed system was the first choice

primarily be_luse of its no-coolant-loss feature assuring grea_er

system re_iability. Inte__nal engine flow will be maintained under

all oper._ting condi_io_c by means of a Luilt-in by-pass thermostat.

The loca_ions of _he cooling sl.stem components, in particular the

coolanL expansion tank, are affected by the requirement to avoid

pump cavitation problems. Liquid cooling permi=s using heated cool-

ant instead of gases containinK carbon monoxide to supply a heat

exchanger which provides hot air for cabin heating and de-icing.

Orca_er fl_xibil/ty in [ocatinK the coolan= =o cooling air heat ex-

char_gers exists comparud tc bafflin!] the cooling air o,er engine

air cooling fins (6or e:¢amp]e, seolers may be placed in the win_s).

The net aircraft coolin_ drag for the RC2-75 is estimated to be one

half that resLilting from comparable finned air-coolei engines.

The trochoid major a::i_ is inclined 15 = from the vertical in a di-

rection to improve bp:-',, _lug drainage. Sin_.e _he wing dihedral can

be 5 =, th_ ".win enuin_ insuai!atlcns will have final angles of I0

and 20 = if installation of the engine package parallel to the wing

_s desired.

In the water system, both the coolant drainage and Lhe steam vapor

venting have been _e[ Lo accommodate major axis inclination from

over 20 Q to O a 5o th, vcrticai. Thi_ was planned to cover the air-

craft and other installations.

The rotor ho,xsing intake port drains into the engine and the exhaust

port drains out of the engine. Being ported, and baying no valves

and cams contributet_ Lo quluter final noise levels than comparable

reciprocating engines.

The ro=or_ used were rcwormed to nave n "si_ort quench" in an efforc

to reduce crevice volume in the combustion chamber.

The engine tested (752!-5), had a compression ratio of 7.5:1. This

selection was made te ac¢o:%_loda_ 5he use of 80/87 octane aviation

gasoline. This gasoline is no longer available while 100/130 octane

is widely available today, permitting the use of higher compression

ra_ios.
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The housing configurations have been tailored to satisfy the needs

of the permanent molding process. The "production sand" method can

cast anything prepared for _'he permanent mold foundry.

There are four pads for engine mounting brackets on the anti-prop

end housing and two on the prop-end housing. This permits accom=o-

datiou of air frames with either fire wall dynafocal mount systems
or bed-mounted systems.

The required engine accesnories, i.e., magneto, waterpump, oil pump

and oil metering vaive are driven thr_,.:Fh a separaLe -rain directly

from the propeller reduction ge_,r driven gear. P-ov_sions are also

included in this =rain to add an SAE cable type t::zhometer drive as

optional equipment. It silou!d also be noted th : he magneto se-

lected for Lhe engine has an output ce_'.nec_or wh .: can be used to

indicate engine speed with an electronic tachome_cr.

Provision_ uo drive optional airframe accessories such as propeller

governor, hydraulic pump, vacuum pump and eit_er a plunger or a

rotary type fuel pump are includ=d in _ separate gear train on the

right hand side of the accessory gearbox. As wi:h the engine ac-

cessories this train is also driven from the propeller reduction
output gear.

All accessory drive bearings are sinCerua material with all bu_ the

most lightly loaded ones pressure oil fed. Shaft oil seals are pro-

vided on all oD$ional drives except the propeller governor pad.

The optional accessory drive gears, which are lightly loaded, have

been sized and designed for powdered metal construction to lower

manufacturing costs.

The engine accessory drive gears make maximum use of powdered metal

components al_hough the water pump drive and the main idler are made

from nodular iron castings.

The engine operates in a dry _,Lv,p configuration; with the scavenge

pump directing hoL cng[ze oil to the oll tank. For =his program, a

test stand pump provided engine oil pressure.

Special spark plugs of standard aircraft instaiiaLion envelope were

used _hroughout the Les_ progr,_n. The_e _'ould be =ado co_ercially
available with engine production.

The accessories selected for this engine were all in production and

have already been certified for ligh[ aircraft use.

The Marvel Schebler. Hodel HA-6, £arburetor used on the engine is a

side draft, float cype with manL_l mixSure control and with idle

cut-off. The carburetor is the s_ne as =_at previously certified

for other light aircraft engine use except for r;anual mixture needle

and jet sizing required to meet the RC engine fuel flow requirements.
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The airflow -- _.v of _,._carac_.. .... carburetor was selected to meet the en-

gine requirements- Air box dar-a has shown the carburetor will flow

1900 PPH of standard air _ith a carburetor loss of 3 inches mercury.

Provisions are made on "!:e engii:e to drive a double diaphragm, AC

Spark Plug Company type .IX f;Lei pu'_D or a rotary vane, positive dis-

placement, fuel pump _+ith integral relief and bypass valves, as

made by Lear-Kor.ec. (Ty?e No. RC cr RD.)

B. Test Equipment Descripzio__n_n

1. Test Cell Cquipmen[ and Confiz_.ra_ion

The RC2-75 engine was in_taiied on Test Cell No. WX-24 for con-

ducning _he _'ASA ?re,gram.

Test Cell No. _:X-24 i_ a complete induction dynamometer test

facilit7 with abs,_rbin/ u=:_-.zity of 8C0 hp, _omple=e services,

ins__rumentatio:" ._.nJ co'hire2.

Figure 4 prese:tLS a schema[do for the engine and dynamometer

drive line system. ConnucL!on of t_,e engine to the dynamometer

was accomp!_shed by apprc_>riate coupling at the prop shaft.

Starting was orovi_ed by ui_a _fu._uin_i_ouse 225 hp capacity start-

ing moto£ ti',ro_gh a sprag,ac clutch. Absorption was achieved by

the General Electric Jnduc::_cn typ ._ dvzamometer-

Figure 5 presents an overc,ll i:.hotographic view of the engine and

dynamometer /rive ._ine ccn_istent with the schematic presented

in the pre.'iou_ _i;_urc,

Figure 6 nresents a cle._e-_:p view of the engine wi_h the view =t
_he intake and exhat:_ side. The induction air system including

the air Dottle _ienu_. cnr_r--t_r intake pipes, prop shaft and

nose and test _tand to engine _o_,_?i!ng are no=able.

Figure 7 p-es_n[s a ciosu--F view a t the enBine anti-prop end

showing tw'-_ of the f:_u' rigid ued mount connections and one of

the bellows tvTe e:-:hn:i._t ni_e._ connecting into =he _es_ stand

exhaust manifold ._ystem. At the right hand side =he engine

blow by is Tce'd lute t!_e engine air supply just before the air

filter.

Figure 8 pre._ents a photograph o_ the T=sner's control station

within the control roo'n. As evidenced here, the tester has

clear visibi]ity into the e,-_gine and dynamometer room while

having wiEhin reach n!] g.ri:-arv test controls, instrumentation,

gages, ebc. !n+_'iude_ _re engine controls at the desk top (ig-

nition switch, t_nrottlc, fu._l/air mixture), dynamometer and

motoring d':namo?:eu.-_r controls at Lhe lower right, airflow (cal-

ibrated bellmoueh and inclinometer), fuel flow (rorometers), load

(cell), rpm (digital counter), with overspeed protection and



dynamometerwarnings conveniently located immediately surround-
ing the tes__ers' primary work zone.

Test Cell WX-24includes previsions for measuring the engine
coolant flow and coo!ing it. "fh_re ks an oil supply system with
cooling and weigh (for fiuw a,:_ cons_,-n_tion) provisions. Flow
pressures and l emperature_ ._re contr_:!led and monitored in the
coolant and lube systems. Since the coolant system is a com-
pletely closed sysCem,(no vents to ambien£ pressure), an ac-

cumulator •"ank and mea_s o[ prc_s,_riz_ng iE were provided to

permi_ control _ the cL_oi_nA ._,y_:._:,.absolute pressure. By this

means, a pressure w;:_ gel _;hich aw,ided cavitation at the cool-

ant pump inlet at maxin:u:n r_.' and p,;'er. The closed system was

then allowed to function w_zhu, ut chnngez at other operating
points.

2. Test Cell !nstrumentatfon

a. Description

Basic instrumentation provisions consisting of selected us-

age a:,d calibrctio,_ r_f a p_,rtie_1 ,,.: tha_ insLrumen_ation

normally available _:t "C¢-2<.

In addition to the airflow, f_ui flow and po_:er measurement

systems previousl? dlscuss_d, various other pressure gages,

mercury and water manom._.ers, flo%._neters, thermocouples, I/C

and C/A temperature inei.caters etc. were utilized to record

for each test point th< ba._ic variables outlineo in the Test

Plan. Figure 9 ks an excerpt fr_,m the Test Plan, marked to

further define tile in_rrur,-,cUtaLion used.

Figures 8 and I0 presenL additional and more detailed con-

crol roo=./ins_r_um_n_ _ bank l-hozo?_raphs reflecting _he basic

arrangement and equ.ip-n_nt used.

b. Calibration

Ins=rum_ntation (and Te._t Equipment) was calibrated and

mainta_.ned to Curtiss-Wright Quality Control Order No. 03-2

Revision B dated 5/29/73 (Ins=ruments), Quality Control

Order No. 0?-6 Revisi:::: C dated 7/2/74 (Standards). The

frequency of calibration was adju.-ted to suit the short

overall tes_ schedule with pre-_est: mid-test and post-test

calibration conducted as coordinated. =-xhaust emission

Scott Model 108-H Exhaust Ca_ ,%qalysis Sysze_n, was caii-

brated by Curtiss-Wright Engineering per._onnel with occa-

sional servicing assistan_:e from. Scott Enviror_m. en_a! Systems
and Beckman [::str _,:nzs. Inc.
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3. Emissions Measurement Equipment

a. Equipment Description

The exhaust gas analysis system used for this test, Scott

Model 108-H (Figure ii), was manufactured by Scott Environ-

mental Systems Division of Environmental Tectonics Corpora-

tion, Southhampton, Pennsylvaula, in conformance with the

system specified by the Federal Register of July 17, 1973

and currently incorporated in the Code of Federal Regula-

tions (40CFR87) for aircraft piston englne emissions test-

ing. The system included an oxygen analyzer as required by

the contract with NASA. Figure 12 schematically defines the
system used.

A heated prefilter was located upstream of a heated bellows

pump in the test cell module, mounted close to the sample

probe in the engine exhaust duct. This pump drove the ex-

haust sample through a heated 40-foot sample llne (5/8 in.

diameter teflon core) to the analyzer console outside the

test cell. Three additional filters protected the various

legs of the analysis system in the console. For the carbon

momoxlde, carbon dioxide and oxygen leg, sample gas was

dried by passing through refrigerator coils before entering

the analyzers. The legs carrying sample gas to the hydro-

carbon and nitric oxide were heated up to the analyzer. The

heated lines were maintained at a skin temperature of 150"C.

The Scott analyzer console incorporated the filters, plumb-

ing and relying required to supply the sample gas as well

as the zero and span gases to the individual analyzers:

CO 2 : A Beckman Model 864 Nondispersive Infrared analyzer

(NDIR) was used to measure carbon dioxide in ranges of
0 - 15% and 0 - 5%.

CO: A Beckman Model 865 NDIR analyzer was used for carbon

monoxide in the ranges of 0 - 12% and 0 - 3%. (This

dual cell analyzer was available for measurements in

the O - i000 ppm range, which was not used in the

course of this carbureted engine test.)

NOx: A Scott Model 125 Chemiluminescence analyzer was op-

erated in the ranges 0 - 50, 0 - i00, 0 - 500, 0-1000

and 0 - 5000 ppm. The thermal converter used to con-

vert nitrogen dioxide to nitric oxide for analysis as

total oxides of nitrogen was a Scott Molybdenum con-
verter heated to 390°C.

02 : A Scott Model 250 Paramagnetic Oxygen analyz,-r was op-

erated in the ranges of 0 - I, 0 - 5, 0 - i0 and
0 - 25% oxygen.

9



THC: Total hydrocarbons were measured with a Scott Model

415 Heated Flame Ionization Detector (FID) in the

ranges of 0 - 10, 0 - 50, 0 - i00, 0 - 500, 0 - i000,

0 - 5000 and 0 - I0,000 ppm as propane.

Three dual-channel recorders provided strlp-chart records of

the readings of the analyzers. A tim/hE indicator at the

right end of each chart was interlocked with the puree/

sample control to show periods during which sample readings
were takem.

A puree circuit was included in the system to supply fil-

=ered air =o the test cell module. Valves at that point

directed this a/r supply both to clear the sample probe and

to clear the entire sample train during periods between test

points. The purge/sample switch controlling the air supply

was interlocked to provide a timing indication on each of

the recorders.

Federal Register requirements include provisions for intro-

ducing span gases for the principal instruments at the sam-

ple inlet to the full emissions systems as a means of de-

tectin E leaks into the system, contamination resulting in

"hydro-carbon hang-up" snd establishing residence time for

each of the instrmaents. The equipment provided by Scott

included only the timing device as a part of the recorders,

to perm/t residence time readings.

The sample-in gas modifications to the Scott system to meet

these requirements included:

(I) Rework of the tesz cell module to admit the additional

gases at the sample inlet.

(2) Addition of a sample-in-manlfold box to accommodate six

console controlled solenoid valves manifolded to adm/t

any of five gases: HC, CO, C02 and NO span gas and RC

zero gas, (Figure 5).

(3) Addition of five gas cylinders in the test cell, con-

nected to the sample-in box by Teflon tubing, (Figure
5).

(4) Rework to the Scott console to add the switches and

relays necessary co control admission of one of the

five gases and interlock wlth the purEe/sample control

to define the zero point for residence time indication

on the recorder charts.

10
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b. Calib ration

Cm

Before the test of the RC2-75 engine under this program, a

full calibration of all analyzers was performed. The NDIR

analyzers were calibrated with +__2% reference gases over

their ranges of operation. The TMC unit was optimized _or

minimum oxygen effect. The NOx converter e£ficiency was

checked with a Scott Model 140 converter efficiency tester

and found to have a c,4.5Z efficiency as defined by the

Federal Register procedure. (90% minimum is required.)

Lineari=y of THC, NO x and 0 2 analyzers was evaluated over

all ranges used in this test. Callbra_ion curve_, linearlty

checks, and post test recalibra_%on show agreemerLt with the

original manufaerurer"s calibration. As a typical example,

Figure 13 shows the three calibrations carried out on the

high CO range 2 curve for converting me_.er readings to %

CO.

Operation

The exhaust emission analysis system was located just out-

side the test cell containing the RC2-75 engine and dyna-

mometer. A 5-point probe was located across the exhaust

duct, downstream of the junction of the two exhaust outlets

of this two-rotor engine.

After the engine was stabilized on a test point, the emis-

sions equipment was switched from puree to sample =ode, and

recorder charts were marked with proper test point number

and scales used on each of the analyzers, (typical strip

charts are shown in Figures 14 and 15).

Instruments were zeroed and spanned at beginning and end of

each series of test points (normally four to six) as well

as perlodlcally during a series. Span gases used were +2Z

reference standards in nitrogen in high pressure cylinders.

The hydrocarbon analyzer was spanned with a propane in air

standard.

Emissions test data obtained were recorded on strip charts.

The raw readings were visually integrated and recorded on

engine test log sheets. The data were converted to concen-

tratlon units by using calibration curves and scale factors.

To verify the validity of a test point from an emissions

standpoint, one oxygen balance and two different carbon bal-

ance calculations were performed to determine that the cal-

culated air/fuel ratio by these methods agreed with the

measured a/r/fuel ratio within 5 percant. Figure 31 shows

the correlation results for the Spindt method.
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d. Problem Areas

Residence time was checked as required by she Federal Regis-

ter. Residence time for the hydrocarbon analyzer was found

to be 3.4 seconds. All other analyzers recorded longer

residence times, as controiied by analyzer response. All

were less than the 10 - 15 seconds permitted by Curtlss-

Wright - NASA agreement.

At extreme conditions, the analyzer range available on THC

was not adequate to cover the emissions readings found at

idle conditions. By respanning to the limit of the gain

available in the analyzer, it was found to be possible to

extend the upper lim/t of the instrument to 14,300 ppm pro-

pane, as against a normal capability of i0,000 ppm. This

adjustment permitted valid readings of THC in the idle mode.

Numerous minor leakage problems in the emission equipment

and exhaust duct were located and corrected. Some leaks

were detected primarily through the use of the carbon bal-

ance calculation.

Recurrent problems were found in the NOx line heat circuit.

Bonding jumpers were replaced on a number of occasions that

had resulted in lack of heat. The NO x line temperature con-

trol was overhauled once, then after a subsequent failure,

replaced with a control of greater capacity.

As a likely result of these problems, operation of the

equipment in the Wet NOxmode as required by the Federal

Register resulted in frequent clogging of the NO x flow-

meters. After repeated purging and cleaning of flowmeters,

we were able to obtain consistent Wet NOx readings only by

using the refrigerated condenser to gave a stable reading of

Dry NOxbefore switching to Wet NOx long enough to stabi-

lize, then returning to Dry N0x.

All points used to calculate the EPA emissions cycle were

based on Wet NO x readings. Some earlier test points used

for RC2-75 characterization were only recorded as Dry NOx

which is felt to give conservative results.

Problems with the C0 instrument included:

(l)

(2)

Lack of flow in one of two parallel sample cells.

Traced to interference between internal fan and teflon

tubing to short cell, cutting a hole in the tubing and

breaking fan blades: fan and teflon tubing replaced,

grill added to fan.

Fall-off in readings during steady operation, with no

similar indication from other instruments. Traced to

12



_o_eratlve vent fan in main vent duct of Scot. _: console

which permitted exhaust from all analyzers to recircu-

late into the CO instrument cabinet via a wiring access

hole fac'/ng the open end of The vent duct. This reclr-

culated exhaust sample affected the opclcal path of the

analyzer and distorted the differential between sample

and reference beam of the NDIR.

C. Test Procedures

The test procedure was generally in accordance with the test plan as

submitted by Curtiss-Wrlgh_ _d approved by NASA. The basic proce-

dures consisted of the following discrete phases:

I. Engine Break-Ln

A break-ln period of thlrty minutes per point for each of twenty

points over a wide load and speed range. Static air leak checks

indicated good sealing after the engine r,m-ln and aft¢r test

running was completed.

2. Basic CalibraTion

Complete calibration of the exhaust emissions measuring equip-

ment, the test cell instrumentation, basic test equipment de-

vices and operation of the engine to support these individual

and combined calibration procedures or to define selected engine

parameters.

This period was considered to be very critical in terms of

"overall" system setup, prior to conducting the specific emis-

sions measurement conditions per the EPA cycl_ to insure reli-

able, repeatable data a=qulsltlon.

3. Emissions Measurement

This phase specifically relates to the EPA cycle emissions char-

acteristics determination. However, a wide overlap with Item 2

was anticipated in obtaining emissions data at a variety of en-

gine operational conditions at full throttle and part load, sea

level condiulons.

In the actual test program, extensive efforts were applied to main-

tain quality data acquisition through repeated calibration and ser-

vicing of various equipment. The majority of this effort was ap-

plied to the Scott Exhaust Gas Analysis System, Model 108-H. The

servicing necessary for reliable data and continual usage of the

Scott system exceeded manhour estimates by a substantial amount.

Nevertheless, the basic groundrule of obnainlng quality, repeatable

data continued to be observed even at the cost of increased equip-

ment servicing, maintenance, calibration, and rerunning some test

points.

13
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To this end a desk top computer program was established for the ex-

amination of alr/fuel ratio from emissions data by three (3) dis-

crete methods. The program was used to examine and verify or reject

each test point for agreement within 5Z to measured ai:/fuel ratios,

throughout the testing. The computer was located in the control

room and the emissions data examined at each test polnt prior to re-

setting of the engine to the next point. This procedure, discussed

in more detail in Section I, D. of this report served not only to

verify rellable emlsslons measurement and Scott Exhaust Gas Analysis

System operation, but was effective in indicating other overall sys-

tem problems or deficiencies throughout the _est (i.e., exhaust sys-

tem leakage, induction air system leakages, m_asurement errors and

ochers).

4. Performance

Prior to obtaining test data each day the engine was started

and warmed up and the instrumentation checked to confirm proper

oil pressure and other parameters. The engine and dynamometer

controls were then actuated to set the engine to the desired

test plan power, speed, fuel/air ratio and spark tlming require-

ment. The operating point was held constant a sufficient time

for all the parameters to stabilize after any required conErol

adjustments had been made. Oil In temperature was stabilized

at 168 - 178°F (75.6 - 81.I'C) and coolant-ln temperature at

180 - 185°F (82.2 - 85.O°C). Performance data were then re-

corded on the engine log sheets and test parameters were plotted

on curves for comparison wlth previous data to determine con-

sistency. If a lack of correlation existed analysls of the da_a

would indicate whether the data point should be rerun or correc-

tlve action on the engine or instrumentation was required.

. EPA Cycle

An emissions test was conducted in basic conformance with EPA pro-

cedures defined in the Federal Register (Reference 2), with one

excepnlon. The Idle mode emission data_ used in the EPA cycle

test results (Figure 36) was obtained prior to the day the other

umdes were run, and there."oz .,_ was out of sequence. The test

was conducted to determine the emissions signatures of the RC2-75

as compared to the EPA proposed 1980 standards. Of the five

modes speclfled_ take-off at 100Z power and approach at 40Z were

as recommended with climb at 80Z, falling within the 75 to 100X

recc_mnended range. Idle at IX power and taxi at fOX power were

selected by the contractor as defined in paragraph 87.92 (a)(2)

of the reference. Specified procedures were followed throughout

the testing and data reduction_ (See also Sectlon T, B, 3m c,

Emissions Measurement Equipment Operation).

All operatlngmode dat._L were obtained at 35 ° BTC ignition timing

with .073 fuel/air ratio maintained at all conditions except

idle where idle mixture was set for best idle at the selected

power and speed eondltlon.
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A sample of the fuel being used (Aviatiom Gasoline, Grade i00) was

tested and found to meet the Specifications in ASTM D910-75. The

results are in Appendix B.

D. Test Results and Discussion

Complete log sheets, emissions strip charts, calibratlous, and data

reduction for the test are on file and available for inspection, if

required, for the 106:30 hours of running and 312 data points ac-

cumulated during the cesUlng of Eng_e No. 7521-8. Sample data log

sheets are shown in Figures 16 and 17.

i. Full Throttle Performance and im/sslons

Based on previously accumulated RC2-75 experience and full

throttle m/xture control curves (Figures 18 and 19), obtained

on the test engine at selected igni=ion timings, it was deter-

mined that 35 ° BTC ignition timing and .073 fuel/air ratio of-

ferred the best compromise for best power and emlssloms at full

throttle and other rich operation conditions. The 35" BTC ig-

nition timing, in addition, was maintained for ground operation,

climb and approach related to the EPA emission cycle. It is

important to uote that since the RC2-75 is a liquid cooled en-

gine, it can be operated at the .073 fuel/alr ratio and leaner

at all power levels without durability limitations.

Figure 20 presents the observed full throttle data at the amb£-
ent conditions noted. Fuel/air ratio was a nominal .075 main-

tained within a +_lZ band. The departure from the desired .073

f/A was inadvertent and adjustment to the desired mixtures

would result only in a minor increase in exhaust gas tempera-

ture, no change in power and approximately 2.7Z decrease in

specific fuel consumption, and minor var£atlons in emissions.

Shown on the curve in addition to the performance parameters is

the induction system pressure drop, amounting to approximately

21 in. R20 at 6000 rpm of which approximately 50Z is attributed

to the air cleaner and che remainder to the duct work and air-

flow measuring system. Figure 21 presents the data of Figure 20

corrected to standard atmospheric conditions of 59°F and 29.92

in. HE dry air per standard practice, with formulae utilized

shown in Appendix C. The standard day take-off power shown is

224 kW (300.4 bhp) a_ 6000 rpm, which exceeds the engine rating

of 212.5 kW (285 bhp). The full throttle airflow varies from

a volumetric efficiency of 91Z at 3500 rpm to 99.3Z at take-off

speed with a peak of 104Z at 5500 rpm which is approxlmately 75%

power cruise rpm indicating a good cruise critical altitude can

be predicted. The BSFC has been adjusted for the corrected

power and airflow in addition to modification to .073 f/A. This

change is made in the best power range where BSFC is directly

proportional to mixture strength because the power change with

f/A here is insignificant. The resulting take-off BSFC is 356

I
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g/kW-hr (.585 lb/bhp-hr). Figure 22 is a plot of the estimated

full thro_tle power vs altitude and fuel consumption.

Full throttle exhaust emissions characteristics at the observed

conditions are presented in Figure 23 cn a pounds per hour basis.

The data exhibit anticipated characteristics with the NOx pre-

dictably lower rhan conventional reciprocating engines at the

leaner best power mixture strengths. The observed and the

Spindt carbon balance calculated air/fuel ratios are compared

on the curve. All formulae utilized in the emissions data re-

duction are presented in Appendix D. Three methods of calcu-

lating air/fuel ratio from emissions measurements were employed;

two carbon balance procedures, one being the Spindt method, and

one oxygen balance. Data points were not considered satisfac-

tory unless all methods agreed within 5% of the measured air/

fuel ratio. Mass emissions rates were calculated by two methods,

one being the exhaust volume method prescribed in the EPA stand-

ards. Both methods are documented in Appendix D. In addition

to the 5% agreement tolerance on alr/fuel ratios, the data was

not acceptable unless the two mass emissions calculations pro-

duced results within 5% of each other.

2. Progeller Load Cruise Performance

Previous experience and survey mixture curves at selected pro-

peller'load powers and ignition timings indicate near optimum

specific fuel consumption occurs at an ignition timing of 55 °

BTC with the engine as configured. Although spark timing was

manually set to the selected values on the test engine, advice

from the magneto manufacturer is that automatic schedules for

retarded operation at full throttle and advance for cruise can

be accommodated. On this basis, propeller load constant power

mixture control curves were obtained at 10% increments of power

from 45% thrcugh 85Z power. Observed exhaust gas temperatures,

manifold vacuum, airflow and brake specific fuel consumption vs

fuel/air ratio are presented in Figures 24 through 28. Figure

29 is a summary curve showing particularly the best power (.073

fuel/elf ratio) and best economy (.065 fuel/air ratio as deter-

mined from the individual mlxture curves) specific fuel consump-

tion at percents of the rated 212.5 kW (285 bhp) power. The

manifold pressures shown on the several curves are individual

intake pipe pressures for each rotor and reflect the character-

istic of the peripheral (radial) intake port configuration of

the RC2-75 resulting in a high port overlap situation. This

contributes to pressure waves in the intake pipes affectln 8 the

manifold vacuums obtained unless the pressure taps are located

precisely. A production engine would incorporate a pressure

plck-up location common to both intake pipes.

Figure 30 summarizes the emissions data, converted to mass flow

rates, obtained while running the several mixture curves. The

curves define distinct families related to the powers and speeds
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under consideration. It is notable that the minimum HC and CO

emissions are obtained at stochiometrlc and leaner mixtures for

all powers with the HC and CO at richer mixtures increasing

with increased power and speed at constant fuel air ratios. NOx

emissions, predictably, increase with decreasing mixture ratiom

and likewise increase with increasing load. Correlation of the

Spindt method carbon balance calculated air/fuel ratio with ob-

served air/fuel ratio for the subject propeller load mixture

curves are shown in Figure 31. The calculated air/fuel ratio

was in all cases richer than the observed, but conslstent from

rich to lean mixtures, with the deviations averaging approxi-

mately 3%.

3. Part Throttle Fuel Consumption and Emissions

In order to provide fuel consumption data applicable for use in

aircraft _rlth constant speed _ropellers, constant speed variable

power curves were run at best power (.073 fuel/a/r ratio) mix-

tures at 6000 rpm with 35 ° BTC ignltlon advance and 5500 through

3500 rpm with 55 ° BTC ignition advance. Additionally, curves at

best economy (.065 fuel/air ratio) were obtained at 55 ° BTC ig-

nition for cruise speed range operation from 5500 through 3500

rpm. Correlation with the mixture curves run on propeller load

was excellent. These data are shown for best power and best

economy in Figures 32 and 33, respectively. Figures 34 and 35,

respectively, define the mass HC, CO and NO x emissions rates

versus power for the _est po_er and best economy conditions

under consideration as a function of power. With the exception

of the HC emissions at 3500 rpm consistent results were obtained

at the best power, .073 f/.l, mixture ratio. This could indi-

cate a trend at light loads and low speed, as shownt for in-

creasing HC emissions or erroneous HC measurements. Carbon bal-

ance air/fuel ratio calculations do not readily detect errors in

HC and NO x measurements due to the small maEnltudes of these ex-

haust constituents compared to CO, CO 2 and 02. Best economy

__mi_slons characteristics, Figure 35, indicate a consistent NO x

family of higher levels than best power mixtures, similar but

lower HC emissions as compared to the best power w/xture data,

and inconsistancle_ in the CO data. These variations are at-

tributed to minor variations in mixture strength during the test

in the range of fuel/elf ratios near stochlomerric where a

strong transition occurs in both HC and CO emissions, as noted

on the mixture curves of Figure 30.

4. EPA Exhaust Emissions Test Results

All operating mode data were obtained at 35" BTC ignition timing

with .073 fuel/alr ratio maintained at all conditions except

idle where idle mixture was set for best idle at the selected

power and speed condition.

17



Figure 36 is a tabulation of data relating to the emission cycle

test with the engine parameters of power, airflow, and fuel flow,

raw emlsslons concentrations, observed and calculated alr/fuel

ratios, dry to wet emissions correction factor and calculated

exhaust density, emission rates, cycle emissions and cycle emis-

sions pe: rated horsepower. Cycle emission per rated horsepower

are compared_rith the EPA 1980 standards.

Results of the test show that the RC2-75 NO x emissions are ap-

proximately 43% below the limit with CO emissions at Ii% below

while _he HC em%ssions must be reduced by 28% to meet the stand-

ard. Inspection of the data shows that the idle and taxi modes

contribute 84.5Z of the total HC emissions.

The probability of achieving the required improvement is very

good with modifications to the power section of the RC2-75. The

engine tested (Engine No. 7521-8), was configured per the origi-

nal designs made for this engine, except for a "short quench"

rotor rework to reduce the crevice vol_--e. As part of the air-

craft engine developmellt effort at Curtiss-Wrlght, but not as a

part of this contract, a number of one rotor engines of the same

basic power m_it design (RCI-75) have been tested to evaluate

modifications on a performance basis. Figure 37 illustrates on

RCI-75 engines the effect, on specific fuel consumption at 77%

power, of these modifications. The configuration changes were

originally intended for improved fuel consumption. However, by

the nature of the combustion improvements, they can be expected

to reduce HC and CO emissions with some penalty in NOx due to

improved operating efficiencies.

Inspection of the curve shows the excellent BSFC correlation be-

tween the RC2-75 and RCI-75 with the same rotor (7.5:1 compres-

sion r_tlo) and .63 inch retraction from the trochoid surface to

the spark plug. Increasing the compression ratio improved the

fuel consumption predictably with the same spark plu E arrange-

ment. Additional benefits were: improved s_avenglng of the

retracted spark plug, reduced cycle to cycle combustion varia-

tions due to higher quality ignition, and resulting improved

flame propagation, and more complete combustion. Additional

improvements were achieved by moving the spark plug electrodes

closer to the trochold surface, illustrated in Figure 2, which

enhances the ability of the plug to see a fresh charg_ each

cycle. Improvement in HC emissions can also be predicted for
the configuration change where the clearance between the rotor

ho_slng and rotor surface at and near minimum volume is In-

creased by modifying the trailing portion of the rotor face.

The natu_ of this change reduces wall quenching effects which

directly _educe hydrocarbon emissions. This change had previ-

ously been incorporated in the RC2-60-U5 automotive engine and

produced up to a 10X reduction in HC emissions.
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Other mod£ficatlons or configurations with potentla= for HC re-

duction are: ceramic coatings on the rotor surface for higher

temperatures, reduced port overlap and higher operating temper-

atures. Related to porting, a combination port arrangement

where the peripheral intake ports would be maintained for high

power operation and side ports utilized for baslcally the taxi

and idle modes are feasible and adaptable to the RC2-75 engine.

The low overlap resulting from the side intake ports reduces

The exhaust dilution of the fresh charge at the high manifold

vacuums at the light loads thus _mprovlng firing regularity and

completeness of combustion leading to reduced emissions of un-
burned fuel.

The taxi condition contributes approximately 70Z of the total

EPA HC value. During the testing at different ignition timing

settings it was noted that tests at taxi conditions with spark

angle advance of 45 to 50" BTC resulted in lower HC values than

the selected 35 ° BTC setting. Since it may not be practical to

provide for a 45 or 50 ° BTC setting for taxi in an automatic

schedule for varying spark angle timing, the demonstrated re-

sults have been presented using the higher HC values obtained

with the 35 ° BTC spark angle. For the record, and possible

future use, the comparative overall EPA cycle results using the
HC results at 45 and 50" BTC were:

B lh _ 35" BTC 45 a and 50 ° BTC EPA 1980 StandardHC _ycle } .00264 .00241 .0019

It should be noted that the EPA operating points are discrete

single conditions, all _n at 35 ° BTC ignition timing and rich

fuel/air ratio (.073). The cruise and propeller load perform-

ance and emissions curves have been run at 55 e BTC ignition

timing with both best economy (.065) and best power (.073) fuel/

air ratios. It is therefore not possible to make direct corre-

latlons. The EPA take-off condition ls a point on the NOT vari-

able rpm curve, however the WOT curve was run at .075 fuel/air

ratio, and _he EPA take-off point was run at .073 fuel-air

ratio. In addlt_on, they were run on different days, which gen-
erally results in some data scatter.

Oil and Coolant Flows and Heat Rejection, Oil Consumption T
Vibratory Forces_ and Operational Limits

Ctl and Coolant Flows and Heat Re_ection

Figures 38, 39, 41, and 42 present The oil and coolant flows and

heat rejection obtained during the tesclng. In each case the

data is presented as a function of engine power, with a family

of curves showing the variation with rpm. The results are con-

sisTent -_rith the data from earlier rotary combustion liquid-

cooled engine testing. The coolant and oll temperatures

l
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experienced during running are listed on the curves. The cool-

ant temperature into the engine averaged 83.6°C (182°F) and the

coolant temperature out of the engine averaged 91.9°C (197°F).

The oll temperature into the engine was 78.3 _ 3°C (173_ 5°F).

The RC2-75 testing to date has been with conventional oil and

coolant temperatures. However, based on analytic studies of

structural, combustion, and durability factors, it has been pro-

jected that engine operation with a maximum coolant out tempera-

cure of 250°F and a maxim,_ oil in temperature of 260/265°F will

prove feasible. It is intended that these maximum temperatures

would occur only at "hot day" conditions during the climb-out

phas_ of flight. For such a system, the cruise temperatures

would be well below the maximum temperatures reached, with the

use of cowl flaps a possibility to raise the cruise temperatures

somewhat. Surveys of major oll compamies indicated thac sump

temperature peaks of 300"F would be permlsslble. From trends of

similar engines, the higher oil and coclant temperatures should

lead to improvements in fuel economy and HC emissions.

The coolers shown on the LS33449 Installation Drawing (Figure

48) have been sized for 277 Ib/min cooling airflow at 3.8 inches

of water pressure drop, and the maximum temperatures mentioned

above occurring at hot day 100% power.

The proposed temperatures will reduce the heat rejection co the

oil and coolant and increase the driving temperature differen-

tial ac the oll and coolant coolers, thereby permlttlng the use

of coolers that are smaller, lighter, and less costly. A spe-

cific example of the benefits resulting from higher coolant tem-

peratures is shown by the following tabulation, in which the

relative cooler size is shown for systems having maximum coolant

out temperatures of 230"F and 250°F.

Relative Cooler Slze

Maximum Coolant

Out Temperature
"F

230

250

For Same

Cooling Drag

1.22

1.0

For Same

Cooling Air

Pressure Drop

1.17

1.0

Compact aluminum construction was indicated over steel and

brazed copper designs on the basis of size and weight consider-

atlons.
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Curtiss-Wright studies have indicated that liquid-cooled rotary

combustion engines are more desirable than air-cooled rotary

combustion engines for future aircraft engine applications. The

essential difference, from the size and weight standpoint, lles

in the greater heat transfer capacity of liquid cooling under

conditions of nucleate boiling as opposed to the air-cooling

system using forced convection. Future designs can be expected

to find air-cooled engine becoming cooling limited at a level of

maximum heat flux below that of llquid-cooled engines. Beyond

that point, liquld-cooled engines can be smaller and lighter.

Liquld-cooled engines are generally less costly to produce and

are shown to be quieter.

The hardware item differences are the blower and cooling air

ducting on one hand, and the water pump and coolant cooler on

=he other. The housing configurations are basically different

in ways which affect cost, structural stiffness and acoustical

behavior.

Oil Consumption

Oil consumption observations during the 106.5 hour test period

indicated generally typical consumption levels for the parmicu-

lar EC2-75 experimental configuration used. 0.9 ibs/hr was

consL_ed in the basic oll system (oil seal leakage and some

minor external leaks encountered in the overall engine/test

stand system). Oil introduced with the fuel for apex seal lub-

rlca=ion at a level of i% is additional consumption. The re-

sultant overall rate is then dependent upon the particular test-

ing and the fuel usage rate. In general, the overall rate of

oll consumption should not exceed approximately 0.4 ibs/hr to be

competitive. The particular engine configuration used in this

test did not incorporate the latest development features in

terms of minimizing oil consumption. These later features, con-

sisting of increased oil seal drain back openings, were evalu-

ated on the RCI-75 single rotor rig during 1975 (Figure 40).

The RC2-75 results have been added for comparison. These data

show substantial improvements for the revised oil seal drain

configurations.

The scope and nature of this test program called for maintaining

operating cona-_Itions at a point only long enough to obtain per-

formance and emissions data. Instantaneous oll consumption data

requires running at a point for a longer time. Since the test

program consisted of running for short times at a great variety

of conditions, it was felt that the average obtained by the

total oll cons,--ed in the basic oil system divided by the total

time was appropriate for this test program.

The increase in oil consumption for Engine 7501 Build 8 after

62 hours was due to a failure not connected with the oil control

system. It should be noted _hat these RCI-75 development
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configurations are considered to be directly transferable to

the RC2-75_ith appropriate but minimal development efforts.

Curtlss-Wright rotary engines have typically permitted longer

times between required oll changes than reciprocating engines.

This can compensate for higher rotary engine oil consumption

rates if the metered oil for apex seal lubrication does in fact

result in higher oil consumption races for the developed rctary
engine compared to its competition.

Since the incorporation in the RC2-75 of the modifications shown

to improve oll consumption for Engine 7501-8 (Figure 40) may re-

sult in lowered HC exhaust emissions, this effect will be moni-

tored during future programs.

Vibrator_ Forces

The engine tested was bed mounted with four rigid attachment

points (Figure 7). In aircraft installations a conventional en-

gine mounting system would be employed providing vlbratory force

isolation. In such a system, which Curtiss-Wrlght has install_d

on it's RC2-75 flight test stand (Figure 3), it is desired that

the six natural frequencies in the six degrees of freedom are

equal to approximately i000 cycles/mlnute or less. This reduces

che vibratory forces into the airframe to less than five percent

of the values resultin E from rigid connections. Based on the

above and the maximum excursions recorded on the vibration pick-

ups (Figure 6) during the test program, an estimate has been

made of Che vibratory loads which would be imposed on a typical

airframe structure. Using the assumption of even load distribu-

tion among the four bed mount attachln E points, each mount point

would impose a side shear load of + 10.4 kg (23 ib) and a verti-

cal load of _ 11.3 kg (25 lb) on t_e airframe structure.

Operational Limits

Regarding generalized operational limitations, - such as deto-

nation, ambient conditions, Instability, - none has surfaced up

Co this polnc chat at8 more restrictive than those of the cur-

rent reciprocating engines available for general aviatlon use.

In fact it is felt that rotary combuscion engines will probably

have slightly better margin _or detonation free operatlonp and

when detonation occurs_ it w_l probably be less damaginE. In

addltlo_, since these are water-cooled engines, they do not re-

quire the cooling effect of rich fuel/alrmixtures utilizing by

today's air-cooled reclprocatlnE aviation engines. Exhaust

valve burning at lean mixtures is another reciprocaClng aircraft

engine concern affectin E operational limits, - which is absent

in the rotary engine. This eases the limiting factors when

selectin E engine settings to meet fuel economy, power and emis-

sions requirements.
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II. ENGINE CHARACTERIZATION

A. Genezalized En_rtne DisplacemenC_ Size_ Power, Weight and Speed
Variation

Sizln$ curves have been completed for aicra£t Rotary Combustion en-

gines to define pzojected weight, dizplacemer-t and overall dimen-
sions for a given power requirement.

The use of Figure 43 (Power and Speed vs Displacement Per Rotor) is
as sho_rn:

• 8 / ROTORS
6

4 2 umber o£

// _ _ _ _ RPM For Diaplacelent

(Muleiply _ Scale by 10

BHP

D:Loplacement: Per Rotor

Weight vs power of the pro_ected engines are shown in Figure 44.

The relation of weight to brake horsepover and number of rotors is
self-explanatory. The parmneters for a given engine on both curves
are related by use of the smme value for power. Engine overall di-

mensions giv_n in Figure 45 are based on displacement per rotor.

The ratio of trochold size to rotor width has been kevt constant for

all curves, rotor width/sha£t eccentricity - 5. A constant ratio of
generat_ug radius/sha_t eccentr£city £s assumed, resulting in Keo-
met_icaIZy similar combustion chambers for all engine a£ze8. The

speeds have bean ze!z_ted to give the same apex seal sliding veloc-
ity at maximum shaft speed for all the engine sizes. This results
im the shaft speed being controlled by displacem_nt per rotor only.

The foregoing, together with the normal relationship of power, rpm,
displacement, and mean effective pressure, are the basis for the

ClirVeS.
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Each of the curves lists the conditions or items included as the

basis for the data. When using the curves for the RC2-75, the

actual dlsplace=ent per rotor, 76.2 cubic inches, should be read.

These curves were used to size two rotor engines rated at approxi-

mately one half and t_-lce the power of the RC2-75. These power

ratings can also be obtained by using one rotor (RCI-75) and four

rotor (RC4-75) arrangements which use the same rotor and rotor hous-

ing parts as the RC2-75 engine. The resulting data has been tabu-
lated :

Engine

RC 2-27

RC 1-75

KC 2-75

RC 4-75

RC 2-215

Rated

Power

kW (bhp)

104 (140)

104 (140)

209 (280)

418 (560)

418 (560)

Rated

Epm

8,400

6,000

6,000

6,000

4,250

Figure

No.

49

51

46

52

50

Weights

kg (ib)

84.5 (120)

93 (205)

127 (280)

228 (502)

267 (587)

Note that the shaft rated rpm varies with the engine displacement

per rotor in order to keep the same apex seal sliding velocity at

rated shaft speed for all engines. The rpm's shown vary inversely

to the cube roots of the displacements per rotor.

B. Installation Drawln_s r Various Sized Engines

A series of installation drawings have been provided to give fur-

ther definition to the RC2-75 engine, and to aid in characterizing

the engine as the power varies.

LS33450, 2 Sheets, Preliminary Zns_allation Drawing, RC2-75 (Fig-

ures 46 and 47). This is a fully developed installation drawing

of the RC2-75, the engine tested in this program. The various ac-

cessories shown are defined, and coolant and oll cooler sizes are

listed. The bases for these coolers are noted on LS33449, de-

scribed below. In order to fit all the accessories at one end, the

accessory gear cover housing has '_ings" extending larger than the

hot section outline. This permits mounting accessories on both
sides of the '_rlngs."

LS33449, Preliminary Installation Drawing, RC2-75 (Figure 48). This

drawing shows a possible close coupled arrange_-nt, for the RC2-75,

which includes a coolant cooler, oll cooler, oll tank, and coolant

expansion tank. These components can be mounted on the air frames
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therefore final location will depand ou the requirements of each

individual application. The conditions regarding system t_mpera -

tures and cooling air requirements used to size the coolers are

noted on the drawing and are discussed in Section I.D.5.

SK12600, Preliminary Installation Drawing, RC2-27 (Figure 49). This

is an outline drawing showing the size and arrangement of a two ro-

tor engine rated at approximately one half the power of the RC2-75.

The power is 104 kW (140 bhp) at 8,400 rpm. The resulting envelope

permits single mesh spur gear reductions for propeller speeds down

to 2500 rpm. The engine center of gravity location shcwn for _his

and the following drawings are approximate, based on inspection and
comparison to known engine data.

Since accessories generally do not vary in size as the engines do

with different power ratings, for the small frontal area of this

engine, it was necessary to arrange the accessories at both ends.

This approach to achieving 104 kW (140 bhp) tends toward a cigar

shaped engine. It is recognized that only certain applications call

for this (such as wing mounted, or ducted fan installations).

SK12601, Preliminary Installatlon Drawing, RC2-215 (Figure 50). This

is an outline drawing showing the size and arrangement of a two ro-

tor engine rated at approximately twice the power of the RC2-75.

The power Is 425 kW (570 bhp) at 4250 rpm. It was possible to ar-

range all the accessories at one end of the engine without the

"winEs" on the RC2-75 arrangement. This results in a relatively
_c._vact arrangement.

SKI_C_, Frellm_nary l=_tallanlon Drawing, RCI-75 (Figure 51). This

outline drawing shows the size and mrrangement of a one rotor engine

rated at approx/mately one half the power of the RC2-_5. The power

is 104 kW (140 bhp) at 6000 rpm. This arrangement _e_ds toward e

shortened, larger frontal area package, whlchlrLght be desired in a

single engine airplane where the pilot determines the frontal area,

and the engine is flrewall mounted in front of the pilot.

SE12579, Preliminary lnstallatlon Drawing, RC4-75 (Figure 52). This

outline drawing shows the size and arrangement of a four rotor en-

glue rated at approximately twice the power of the RC2-75. The

power is 425 kW (570 bhp) at 6000 rpm.

C. 0il and Coolant Flows and Heat Re lectlon

In order to further facilitate the evaluation of different sizes of

rotary engines in a/rcraf_ applications_ sizing curves of engine oll

and coolant flow and heat rejection are shown in Figure 53. The vari-

ables are plotted agalnst shaft power. The oil and coolant system

temperatures should approximate those shown in Figure 42, (coolant

average, 87.8"C (189.5"F) and oll in 78.3"C (173eF)). If the higher

oil and coolant maximum temperatures discussed in Section I,D.5. are

incorporated the curves in Figure 53 will require modification.
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D. Scaling Considerations and Significant Variables

Rotary Combustlon Engines can be made in the range of sizes dis-

cussed previously (27 to 215 cubic inches of displacement per rotor)

wlthout being limited by size factors affecting performance, dura-

bility, manufacturing, or cost aspects. Figure 54 shows the rotors

of the variety of working engine sizes Curtiss-Wrlght has designed,

(ran84ng from 4.3 to 2,500 cubic inches in dlsplacemenr per rotor).

Some new engine candidate sizes are also shown iu white.

For parts that are essentially scaled up in all respects, the stress

levels remain constant. Figure 55 illustrates this for the shaft

torsional shear stress of three different sized engines. The vari-

ations in displacement, shaft diameter, power, rpm, and average

torque are shown whale the average torsional shear stress is con-

stant at 600 psi for the three different shafts.

When designing a new different sized engine geometrically similar to

an existing engine, the linear dimensional ratio ks called the scale

factor, L. While many dimensions are scaled directly, some are

not, - such as the thickness of heat transfer walls, - or toler-

ances. Pot parts that are directly scaled, the weight will vary in

proportion to L3. Wher£ heat transfer walls are present, an attempt

is made to keep the thickness constant regardless of engine size.

This is often modified by structural and manufacturing aspects. For

a heat transfer wall of exactly the same thickness the weight would

vary in proportion to L2. Parts from different sized englnes have

been welghed and the weight scaling factors determined for estimat-

ing purposes. The values of Ehe exponents fall between 2 and 3 de-

pendin 8 on the funcuion of the part. Figure 56 shows the 75 to

2500 cubic inch rotors to scale. Using the scale factor and actual

weights, an exponent of 2.785 was found to relate the rotor weights.
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511. CONCLUSIONS

The RC2-75 .',o_ary Aircraft en8 tne was tested and a representative base-
line established of its performance and emissions characteristics. _n
addition, characterls_ic informaclon required to evaluate the engine's

performance in aircraft use over a range from one half to _ce its

raced power was provided.

A. It was determined that 35° BTC ignition cimin8 and .073 fuel/air
ratio offer the best compromise for best power and emissions at full

throttle and other rich operation conditions- The 35" BTC iEnicion

tim/n8, in addition, was maintained for 8rou nd operation, climb, and

approach as relat _-d to the EPA emissions cycle. The engine emis-
sions, compared to the EPA 1980 proposed requirements, were 45Z be-

low for the NOx emissions, IIZ below for the CO emissions, and 39%

above for the MC emissions. The taxi and idle conditions accounted

for 85% of the demonstrated BC value. Takeoff BSFC is 356 g/kW-hr

(.585 Ib/bhp-hz)-

B. For cruise condltions optim_ specific fuel consuBption occurs at an

ignition tlmlng of 55 ° BTC. Pot best power a .073 fuel/alr ratio
was used, and for best economy a .065 fuel/air ratio. The brake

specific fuel economy demonstrated for the _2-75 was 326 g/kW-hr

(.556 ib) bhp-hr at 77_ power and is considered representative for

the conflguration tested.

C. The engine is rated at 285 brake horsepower at 6000 rpm.
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IV. RECOMMENDATIONS

Having established a valid baseline at the current stage of the RC2-75

development program, and with the engine functioning well and indicating

good durability, the way is cleared to evaluate a number of modifica-
tions aimed at improving the specific fuel consumption and emissions
levels.

Single rotor engine testing (RCI-75) has established that certain modi-

fications improve specific fuel economy. For example, prior tests of

the RCI-75 showed that modifications can improve the specific fuel con-

sumption to 279 g/kW-hr (.459 Ib/bhp-hr) at 77% power. These types of

changes =:e recommended below in addlulon to modifications based on ex-

perience with Curtiss-Wright's RC2-60 engines. It is likely that with

these modifications, the RC2-75 fuel consumption and emissions can be

improved sufficiently to meet the EPA 1980 emissions requirements with-

out add-on devices or any sacrifice in performance or durability.

A. Close-In Spark Plug Testing

Evaluated by successively deeper machlned spark plug seats, directly

in aluminum housing.

B. Autotronlcs C-D Ignition

May be needed to consistently ignite with surface gap plugs at low

power conditions such as taxi and idle.

C. Fual Injection

Evaluate whether taxi condition HC emissions are improved. If they

are, complete evaluation for full range of engine operation.

D. Rokide Rotor

This may help improve combustion regularity and reduce wall quench-

ing by increasing the rotor surface temperature.

E. Combination Ports

Using both peripheral and side ports permits avoiding the high port
overlap at low loads that is present with the peripheral port in

the current test engine. At low loads the side intake only would
be open, and at high loads, both would be open.

F. Higher Compression Ratio Rotors

RCI-75 testing with 8.5:1 rotors has demonstrated SFC benefits.

Original 7.5 to 1 compression ratio was based on use of 80/87

octane fuel - no longer available. Current aviation fuel is I00/
130. 8.5:1 and 9.5:1 rotors should be evaluated.
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Figure 11. Scott Model 108-H Exhaust Gas Analysis System Console.

41



RNPEODUCIBD..,ITY OP THE

DI;L[GI_AL PAGE IS PCx_R

t

t
t

_ I

42



Figure 13. High dO R:,.n_,, 2 Convr.rc-ion _'urve, :'lerer Reading co

_!, CO,, _':_ _h R_.ca" "['!'a" icF.<.

_3



..+o.

.+

w

*l"llfl "'01kll "Si'IC_IVN¥1QNI

..... • . I ', +t.__.... _sun "-'.

o I "_-_.X _-9-- ....... _..... _ ......... <) _ '_,_ !_": ,_. _'.

"_ _"_-rT"_5" tt1_'---,-_-- _--_i_ 411 .- i V-_ -,_--' =-- "_'n

_J__ ', " -,tim --_r+-mil.]l- __ o _ .L ' _'_:_:" i L

.... .....• .-.....!.... ,. ,,_ 1 - _
i ,_ .=. ,]

;_. i I"_N_'l_r;- I'-. -_ _ _ I -_ ._ :
_::_ r-7-- _,T-1----_ .... _ ,; m_ _. [
:',',',',',',',',','_--,-'-,- _ .... _'--'-_- ..... t+-----S----- :m _ -_ T"

---.---L."-..--.. - . ; _1+= i =< o.-_ g;: _-,-_--- o
r.---_.- _---.*: ..... --- I .... _+ " ' "I_• I

.l_J-_--_.l._¢ ... t.,_,_"_i_,_ i _ t -_I ..---.::-:i.'tl_,g-. 5[.
_-_:.:- _t<-':Ui:--a_ll_:-J _-I'. I _i ..::.s-_ ::-_- '+l I

r-_ _-_-:-._ :+-m_--r. .... r ....... 1_ --I_
.__ -- " "'., --- , I ; ,4 _ ..... _........ "_-

4------I .... - -:' I ____I ........ __......... CJ__..+ ,--'_:t-.-+m __ , +
.l I .- '. 1 + J [ . +11,_,.LI_I_J I'
I. l I + --_-,.--j-._--.5 IIILJIIIJI_-._+. " [
_1_+ .+ o+_, I I +o ; ll-,lili__," - t+

7+ " 7 --q .... ,_i___ ____ t ____!.___ ..._______. _:
I m I I , I : I Elll I_! I X ;
_"+_ ............ _ - - I"

;_ _ • I ." l_ : - ; I i '" '_ 7-1 '
L__ _ _ _.. .L ..: ..... L ....... !._ _'_L__ __._._____..__
• _ -- l ' I

..........; :_ " l _' --------F--_ ..... !k.... '. Jl _----. _+,

-- r ..... T I " T T " r ....... t ....... _ + l--l_--

i- ' i" , _: +_ IE ___r7'+ i + .... +,+.....
. ,+ ...... -+......... ,ffi_.--. !.... >-__. _- -_+----LO-__r _ ......

• II • , _ . _ -- . .... " 4F" I) II I) 0 I) J) )

0

m

0
.,,,._

"G

@

i-

e-

u

o

G

o

e-

_J

m

o

ffl
m

#

t_
m

KF_.pR_DUCIBILITY OF TI_8



t .....

l

1

f

/

_5



j-.

46

L

;ll
I"

'W

I-.
I__.

L'-"
!

.|

.I

,..,
,o

,?
!,q

at"

Ir"

tl"

..-.
!
i-'.
J
!

F
i'
t-

m

°1 I:

4

I

I "

"1 i

i,

:!
I

' I

i

i



----- , I

'_ L_I ! _'' I : ' 1] : I r i , ! !

I . ,

i "'- "'T" i ,""
i --"-"-T _.-

----

F--

• , °

- ::_:::--::-
",----: _:_..l__ I_i.: I

t : ' I

_---_-- _- ..... ! .....

/

!i! :: !i!i

_ ..:'--._:: .... I:: _ :_ ..... -: ' [ .... I'-'_,
._ ........ _.: .-._ .... ! ....... : .....

_-_ _ . ' i ' , , : ' '

6_r'_ : I ' ,,il :_i': !!.l ! '[
1_ ;_ ....... l...... ,----'_-"--,'-, ..... I " _ .....

_.. : "- ......... , -.! .... , ,: -I .... " • I' '

__ : .... I---T !i_,,:=r-i_r-:"l: "'I" ;'I
=_o - . I, ., ,I .. I. : I 1 ,
;_- " ..... T"- ................ _ "- "

" ""_-44 :'_'_: .... T -,_'_ -"_ :-:- "-- ; _'-'=-

, _ t -L'*"I !i' ]' 1 I i
"''_ ._-_ "_" _..L-_a_ , ' .,... _- i _;_ _ . i . "._ |

i

-__ / , :'[ I,,, ! _ 1

I _ -==-- 1-=--=.... -_--. if;,.,=I=-.. =;,-I

: " -| i : ' , , ' ' r '_,_ , , _ : _ ,

- • : ,, i ,-q , : i

!

l

] : _ ' ' l: ? '

.__- :.L.__ L_Ld_,, ,,r i

, I, .-t I1
...... _.-:_- .

:i ! i=
2 _o:"

_-__; .....

I

0

_D

!

IP

0

m

ID
t_

47



........ _v_ i"_s - WleJ _/v r "

........... -- ...... i _CC- 75"

/oO,//._.4_s , _Jie/_J_t ikrV,T_ _,_-G " "

i ..... : --' .....
+

h...... _ .4,... +--÷ 3o _src
.... _=_; ......:_a-_.- _--* _,'=,'_

'" ' - .... ,- __- :--_: --_-:'_.

!:.,_1!_1"_1i_'?",_ ' _7 ........... _",___. -- -- ......:_,_ .,._,_' ' . ,

:__i}1:_ . "................ ----,_r_ ......

-- .,,::_,_ .:- !,.._

:-: -7: ...." : .......... ....._ "'I
., +1-°

400 _._,_ . -q 7/

•_'(-./_'¢-- ,_,_'_ R_,_7"_O

Figure 18

48
I
r

i.
I



?
.... I.

! !_!=i Ill-
I I

: ° ..

,/ ..___ ....

Figure 19

_9



' !

Figure 20. Observed Full Throttle Performance.
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Figure 23. Full Throttle Exhaust Emission RaCes.
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Figure 24. Constant Po_er Mixture Control Curve, 857° Po_er - Propeller Load.
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Figure 25. Constant Power Mixture Control Curve, 75% Power - Propeller Load.
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Figure z+3. Engine SizLng-Power And Speed vs D£spLacement.
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Cut-r_iss-Wr-tght: Corporat:ion

Airccaft Rotnry Combustion Engine

Figure" S3. Oil and Coolant Flows .and )t¢'aI Rc.jcctio_ vs power.
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EXAMPLE OF COMPONENT WEIGHT

SCALING EXPONENT-US ZNG

ACTUAL HARDWARE

RCI-75

Rc-i-_5oo

I

WT ,= 19.3 Ibs. WT - 500 Ibs.

Figure 56.

SCALE FACTOR, L - 500 _ = 3.218

ROTOR
2. 785

NT75 x L " WT2500

2.785

19.3 x 3.218 = 500 lb.

Example of Component weight Scaling From Actual Rardware.
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VI. APPENDICES

A. Curtiss-Wright Pr}jected F.A.A. Type Certification Activity

B. Aviation Gas 100/130 with 1% AD 65 Oil, Laboratory Analysis Report

C. Formulas for Full Throttle Performance Corrections to Standard Day

Sea Level Conditions

D. Exhaust Emissions Calculation Formulae

E. Excerpts from the RC2-75 Engine Specification
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APPENDIX A

CURTISS-T/RIGHT RC2-75 ROTARY ENGINE

PROJECTED F.A.A. TYPE CERTIFICATION ACTIVITY

RCI-75 Engines

i. Extended endurance

2. Endurance and performance effects of cooling changes

3. Ignition system evaluation

4. Spark plug location closer to trochoid

5. Combination peripheral and side ports

6. Rotor modifications (Rokide coating, higher compression ratios)

RC2- 75 Engines

i. Evaluation of alternate vibration dampers

2. Starting tests (normal and low temperatures)

3. Extended endurance

4. Fuel metering, and manifold development

5. Accessory and control system endurance and performance testing

6. Fligh_ evaluation coordination

7. First unofficial type certification test

8. Flight instrumentation and ground checks

9. Second unofficial type certification test

i0. Flight tests

]I. Official type certification test
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API'I:.NDI X C

FULL 'IHROTTLE PERFORMANCE CORRECTIONS

TO STANDARD DAY SEA LEVEL CONDITIONS

2

!:

,!

Ao Brake Horsepower

1. BHPst d = (BHPob s + FliP) 518
- FHP

where FHP = friction horsepower

B D _ true barome=er- vapor pressure, in. Hg

_p = airflow system pressure drop, in. }Ig

CAT - carburetor air =t'mperaturu, 6F

B, Airflow

where B T ffi true barometer, in. Hg

C. Brake Specific Fuel Consumption

I AFstd )3. BSFCst d = (f/aact) B"_._td

where f/aactual

ande__ = B_n
Pw BE

(f/Aobs)'/I"w - "377 Pv= PW

1 - Pv
Pw

- I

where the correction factor accounts for =he water

vapor in the measured wet airflow

vKI_gD]NG pAGE BLANK NOT FRMED
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APPENDIX D

EXHAUST EMISSIONS CALCULATION FORMlrLAE

A. WeE Correction Factor for Water of Combustion and Ambient Humidity

A procedure used in the general aviation industry was utilized as follows:

I. H20 =[2+7" 67478(W1 ]I-H20

IO0 (12.01 + 1.008 2[(CO1_+02)]+(CO)+(NO

° - fo_ |

where ( ) = % concentration of exhaust constituents

with CO, CO 2 and 02 dry and NO and HC wet

as measured

f/a = measured fuel air ratio

y = hydrogen carbon ratio

and w/a, the inlet air specific humidity

w/a = .622 (true barometer - dry barometer)
dry barome=er

2. From the above, the correction factor, Cfw, derives as

I
Cf =

w i + H2____o__o
I-H20

B. Calculation of Air-Fuel Ratio

The Spindt carbon balance procedure, reference 3, was utilized as fo]lows:

[ (') ]3. A/F = Fb 11.492 Fc 1 +_ + Q + 120 (l-Fc)

1 +R 3.5+R

where R - (CO) (O) Fb (CO) + (C02)
(CO2) Q = (co----__) " (CO) + (CO2) + (THO

12.01
and Fc =

12.01 + l.O08y
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4.

C.

An oxygen balance calculation procedure for air-fuel ratio by

Stivender, reference 4, was also utilized

A/F = 4.76 ((H20) + (NO_} + (CO) + (C02) + (02)) 28"96
(co) + (=02) + (T_C)

where (H20) = I00 (i - Cf w)

and Mf = 12.01 + l.O08y

alr fuel ratio, also by
a carbon balance procedure of calculating " -

$tlvender, reference 4, was also utilized

5. A/F -
Mf _ (co) + (co2) + (THC)

CalculaLion of Exhaust Gas Density

From Figure _7 (Curtiss-Wright Engineering Handbook, 1965) s_owing the

gas constant, R, versus f/A for varying hydrogen c. "bon ratio the fol-

lowing was derived to determine exhaust gas density for the exhaust

volume mass emissions calculations.

1 f/a t = (.9558 - F h)

l.O08y

where Fh = 12.01

•086

if the observed f/A is equa] to or less than f/a t the gas constant

is calculated

7. R1 - [ (F h -.I) 453.33 + 120] fla + 43.2
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calculated

Rr = 5_4s f--/a-t + 1

the exhaust gas density results from

53.345

(14.7)(144) 4.009 lblft 3
9. dex h = (528) R = R '

D. Mass Emission Rates

Exhaust Volume Method

= /FF +

where FF

AF

(x)

dexh

d
x

AF1 (X) (dx)

= fuel flow, ib/hr

= airflow, Iblhr

= concentration of pollutant wet

= exhaust gas density at 68°F, 760 mm HE

= densit 7 of pollutant

ii. X, ib/hr

Carbon Balance Method, reference 5

= (X) (¢) (dx)

I00

where V = exhaust flow, Iblhr

(. 100 ) F(___f)= ('THc) + (co) + (co2) (N)

where ( ) = Z concentration of pollutant wet

Mf = 12.01 + 1.008y

N - 385 fL3/Ib mol a_ 68°F, 760 mm Hg
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APPENDIX E

EXCERPTS FKOM THE RC2-75 ENGINE SPECIFICATION

Displacement

The engine incorporates two rotors with a total displacement of 152.4 cubic

inches.

Reduction Gear and Propeller Shaft

The reduction gear is a spur gear drive having a ratio of 27:74 (.365:1). The

propeller shaft is provided with a 4.875 inch O.D. propeller mounting flange

having a 4.000 inch diameter bolt circle in accordance with ARP-50 _- Rotation

of the propeller shaft is clockwise viewed from the anti-propeller end of the

engine.

Overall Dimensions

The overall dimensions of the engine including the carburetor, magnetos, and

starter ling gear but less the alternator, and external oil and coolant cool-

ing equipment are as follows:

21.5

Height, in ................... 23.7

Width, in ................... 31.4
Length, in ...................

Center of Gravity Location

The approximate center of gravity of the dry engine is as follows:

4.0 inches below propeller shaft centerline, in a vertical

plane passing through the propeller shaft centerline, and

18.0 inches aft of the propeller mounting flange.

Fuel Inlet Connection

The cazburetor is provided with a

tion of the fuel inlet connection.

.250 x 18 NPSF pipe tap hole for installa-

Fuel Pressure Connection

A .125 x NPTF tapped hole is provided at the carburetor to measure fuel pres-

sure.
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Oil Pressure

The operating main engine oil pressure shall be:

20 psi minimum .............. idle to 2000 P.PM

55 - 65 psi ................. above 2000 RPM

Oil Drain

An oil drain is provided at the bottom of the anti-propeller end housing in

accordance with Part 23.1021 of Federal Aviation Kegulations for drainage of

the engine only. An addi=ional drain is provided in the external lubrication

system to drain the oil tank.

Breather

The engine is provided with a threaded connec=or for a .75" diameter hose for

venting the engine case to the oil tank.

Oil Inlet and Ou=let Connection

The following tapped holes are provided for oil inlet and outlet connections:

Oil Inlet to Pressure Pump ...........

Oil Outlet from Pressure Pump ..........

Oil Inlet into Engine ..............

Oil Outlet from Scavenge Pump ..........

.750 NPTF

.500 _PTF

.500 NPTF

.500 NPTF

Oil Pressure Ga_e Connection

A .250 x 18 NPTF tapped hole is provided for the installation of an oil pres-

sure gage connection.

Oil Temperature Ga_e Connection

A .500 x 14 NPTF =apped hole is provided for the installation of an oil tem-

perature gage connec=ion.

Coolant

The coolant for the engine shall be a mix by volume of 50% Pres_one (or

Curtiss-Wright approved equivalen=) anti-freeze and 50% =ap water.

Coolant Inlet and Outle: Connections

The engine is provided with two four-bolt attaching pads for _N 756 _langes

for the installation of the coolant inlet and ou=let connections.

Coolant Outlet Temperature Gage Connection

A .500 x 14 NPTF tapped hole is provided for installation o_ the coolant out-

let temperature gage connection.
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Starter Drive

The engine incorporates a ring gear with i0 D.P. and 160 teeth as standard

equipment. A starter mounting pad is provided to accommodate starters with

mounting flanges conforming to SAE Specification J642a type i.

Diaphragm Type Drive

This drive operating at 0.394 engine speed is available with a double dia-

phragra AC Spark Plug Division type JT fuel pump.

Rotary Type Drive

This drive operates at 0.394 engine speed and conforms to Specification AND

20003 Type XIILA. Rotation is counterclockwise when viewed facing the pad.

Lear Romec rotary vane fuel pump No. RG 17989 is available for this drive.

Accessory Drive Ratios

ENGI_:E ACCESSORY DRIVES

Cont. 0'Hung

Type Speed Speed Torque Moment

Item Drive Rotation RPM Ratio ib-in, ib-in. Remarks

Magneto Special CCW 3000 .500 - - Scintilla

(Gear) D2000 Ser.

Oil Pump Special CCW 3600 .600

(Gear)

Water Pump Special CCW 4909 .818

(Gear)

OPTIONAL ACCESSORY DRIVES

Tachometer SAE J678C CCW 3000 .500 7 5
3/16 H.D.

Hydraulic AND 20000 CCW 3000 .500 i00 25 NY Air Brake

Pump Type XA Model 67-B025

or 67-A025

Vacuum AND 20000 CW 3000 .500 i00 25

Pump Type XA

Prop. A_ND 20010 CW 2364 .394 125

Governor Type XXA

Fuel Pump Plunger - 2364 .394 * I0 *Peak Arm Load

or 33 ib_
Fuel Pump _ND 20003 CCW 2364 .394 25 25
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Cont.

Type Speed Speed Torque

Item Drive Rotation RPM Ratio ib-in.

Alternator "V" Belt CCW 12000 2.00 -

Polyflex 60 °
or

Alternator "V" Belt CCW 12000 2.00 -

Polyflex 60 °

Starter Direct CCW - 17.$:1 -

Drive

Air

Conditioner "V" Belt CCW 4000 .667 -

O'Hung

Moment

Ib--in.

DETAIL WEIGHTS

i. Engine (Standard)

Basic Engine

Carbure=or, Marvel-Scheblzc

Magneto

Spark Plugs (4)

Ignition Leads

Starter Drive (Flywheel & Ring Gear)

Accessory Substituting Cover Plates

Coolant in Engine

Standard Engine Weight

2. Normal Engine Weight

Standard Engine

Starter

Oil Cooler )

Oil Tank ) Dry

Coolant Cooler

Coolant in External System

Normal Engine Weight

3. Accessories and Drives (Optional)

Fuel Pump

Fuel Pump Drive

Engine Mounting Brackets

Alternator and Drive Parts

Governor Drive

Fcopeller Beta Control

Air Conditioning Drive

Vacuum Pump Drive

Hydraulic Pump Drive

Remarks

12 volt 60 amp

24 volt 70 amp

9 Tooth Pinion

Ref. Wesuon

Hydraulics HE

81000 Series

Compressor

296 ibs

296

358 ibs

ii0
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